
Wednesday, July 16, 2008

Problem 1. An acute-angled triangle ABC has orthocentre H. The circle passing through H with
centre the midpoint of BC intersects the line BC at A1 and A2. Similarly, the circle passing through
H with centre the midpoint of CA intersects the line CA at B1 and B2, and the circle passing through
H with centre the midpoint of AB intersects the line AB at C1 and C2. Show that A1, A2, B1, B2,
C1, C2 lie on a circle.

Problem 2. (a) Prove that
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+
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(z − 1)2
≥ 1

for all real numbers x, y, z, each different from 1, and satisfying xyz = 1.

(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each
different from 1, and satisfying xyz = 1.

Problem 3. Prove that there exist infinitely many positive integers n such that n2 +1 has a prime
divisor which is greater than 2n +

√
2n.
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Thursday, July 17, 2008

Problem 4. Find all functions f : (0,∞) → (0,∞) (so, f is a function from the positive real
numbers to the positive real numbers) such that(

f(w)
)2

+
(
f(x)

)2

f(y2) + f(z2)
=

w2 + x2

y2 + z2

for all positive real numbers w, x, y, z, satisfying wx = yz.

Problem 5. Let n and k be positive integers with k ≥ n and k−n an even number. Let 2n lamps
labelled 1, 2, . . . , 2n be given, each of which can be either on or off. Initially all the lamps are off.
We consider sequences of steps : at each step one of the lamps is switched (from on to off or from off
to on).

Let N be the number of such sequences consisting of k steps and resulting in the state where
lamps 1 through n are all on, and lamps n + 1 through 2n are all off.

Let M be the number of such sequences consisting of k steps, resulting in the state where lamps
1 through n are all on, and lamps n + 1 through 2n are all off, but where none of the lamps n + 1
through 2n is ever switched on.

Determine the ratio N/M .

Problem 6. Let ABCD be a convex quadrilateral with |BA| 6= |BC|. Denote the incircles of
triangles ABC and ADC by ω1 and ω2 respectively. Suppose that there exists a circle ω tangent to
the ray BA beyond A and to the ray BC beyond C, which is also tangent to the lines AD and CD.
Prove that the common external tangents of ω1 and ω2 intersect on ω.
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